ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Том Сойер взялся покрасить очень длинный забор, соблюдая условие: любые две доски, между которыми ровно две, ровно три или ровно пять досок, должны быть окрашены в разные цвета. Какое наименьшее количество красок потребуется Тому для этой работы? На продолжениях сторон A1A2, A2A3, ..., AnA1 правильного n-угольника (n ≥ 5) A1A2...An построить точки B1, B2, ..., Bn так, чтобы B1B2 было перпендикулярно к A1A2, B2B3 перпендикулярно к A2A3, ..., BnB1 перпендикулярно к AnA1. |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 9759]
Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?
В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков).
Из произвольной точки круглого бильярдного стола пущен шар. Докажите, что внутри стола найдётся такая окружность, что траектория шара её ни разу не пересечёт.
Один из острых углов прямоугольного треугольника равен 25o. Под каким углом виден каждый его катет из центра описанной окружности?
Радиусы двух концентрических окружностей относятся как 7:4, а ширина кольца равна 12. Найдите радиус меньшей окружности.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 9759]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке