|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В клетках бесконечного листа клетчатой бумаги записаны действительные числа. Рассматриваются две фигуры, каждая из которых состоит из конечного числа клеток. Фигуры разрешается перемещать параллельно линиям сетки на целое число клеток. Известно, что для любого положения первой фигуры сумма чисел, записанных в накрываемых ею клетках, положительна. Докажите, что существует положение второй фигуры, при котором сумма чисел в накрываемых ею клетках положительна. Докажите, что если функция f (x) выпукла вверх на отрезке [a;b], то для любых различных точек x1, x2 из [a;b] и любых положительных
f
На плоскости дан квадрат со стороной a . Найти объём тела, состоящего из всех точек пространства, расстояние от которых до части плоскости, ограниченной квадратом, не больше a . |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]
Через точку D, взятую на стороне AB треугольника ABC,
проведена прямая, параллельная AC и пересекающая сторону BC в
точке E.
В трапеции точка пересечения диагоналей равноудалена от прямых, на которых лежат боковые стороны. Докажите, что трапеция равнобедренная.
На доске была начерчена трапеция, в ней была проведена средняя линия EF и опущен перпендикуляр OK из точки O пересечения диагоналей на большее основание. Затем трапецию стерли. Как восстановить чертеж по сохранившимся отрезкам EF и OK?
Дана трапеция ABCD (BC || AD). Точки P, M,
Q, N являются серединами сторон AB, BC, CD и DA
соответственно.
Площадь трапеции ABCD равна 6. Пусть E – точка пересечения продолжений боковых сторон этой трапеции. Через точку E и точку пересечения диагоналей трапеции проведена прямая, которая пересекает меньшее основание BC в точке P, а большее основание AD – в точке Q. Точка F лежит на отрезке EC, причём EF : FC = EP : EQ = 1 : 3. Найдите площадь треугольника EPF.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|