ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Около треугольника ABC описана окружность. Продолжение биссектрисы CK треугольника ABC пересекает эту окружность в точке L, причём CL – диаметр данной окружности. Найдите отношение отрезков BL и AC, если sin∠A = ¼. Сколько существует таких пар натуральных чисел (m, n), каждое из которых не превышает 1000, что
Даны прямая и на ней точки A и B. Найдите геометрическое место точек касания окружностей, одна из которых касается данной прямой в точке A, другая — в точке B.
Прямоугольный параллелепипед размером m×n×k разбит на единичные кубики. Сколько всего образовалось параллелепипедов (включая исходный)? |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 604]
Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.
Докажите, что хорды, удалённые от центра окружности на равные расстояния, равны.
Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.
Средняя линия, параллельная стороне AC треугольника ABC, равна половине стороны AB. Докажите, что треугольник ABC – равнобедренный.
В прямоугольном треугольнике АВС проведена высота СН из вершины прямого угла. Из вершины В большего острого угла проведён отрезок BK так, что ∠CBK = ∠CАB (см. рис.). Докажите, что СН делит BK пополам.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 604]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке