Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Около треугольника ABC описана окружность. Продолжение биссектрисы CK треугольника ABC пересекает эту окружность в точке L, причём CL – диаметр данной окружности. Найдите отношение отрезков BL и AC, если  sin∠A = ¼.

Вниз   Решение


Автор: Фомин Д.

Сколько существует таких пар натуральных чисел  (m, n),  каждое из которых не превышает 1000, что  

ВверхВниз   Решение


Даны прямая и на ней точки A и B. Найдите геометрическое место точек касания окружностей, одна из которых касается данной прямой в точке A, другая — в точке B.

ВверхВниз   Решение


Прямоугольный параллелепипед размером m×n×k разбит на единичные кубики. Сколько всего образовалось параллелепипедов (включая исходный)?

Вверх   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 604]      



Задача 53912

Темы:   [ Диаметр, основные свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.

Прислать комментарий     Решение

Задача 53915

Темы:   [ Диаметр, основные свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что хорды, удалённые от центра окружности на равные расстояния, равны.

Прислать комментарий     Решение

Задача 53918

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.

Прислать комментарий     Решение

Задача 54668

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Средняя линия, параллельная стороне AC треугольника ABC, равна половине стороны AB. Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Задача 64991

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 2+
Классы: 7,8,9

В прямоугольном треугольнике АВС проведена высота СН из вершины прямого угла. Из вершины В большего острого угла проведён отрезок BK так, что ∠CBK = ∠CАB (см. рис.). Докажите, что СН делит BK пополам.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .