Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Акопян Э.

Мальвина записала равенство  МА·ТЕ·МА·ТИ·КА = 2016000  и предложила Буратино заменить одинаковые буквы одинаковыми цифрами, разные буквы – разными цифрами, чтобы равенство стало верным. Есть ли у Буратино шанс выполнить задание?

Вниз   Решение


После экспериментов с мнимой единицей, Коля Васин занялся комплексной экспонентой. Пользуясь формулами задачи 61115, он смог доказать, что  sin x  всегда равен нулю, а  cos x  – единице:

   
Где ошибка в приведённых равенствах?

ВверхВниз   Решение


Ромб ABCD и параллелограмм BCFE с углом $ \angle$BCF = 120o расположены так, что точка E лежит на отрезке AD, а точка F — на продолжении стороны AD за точку D. Площадь четырёхугольника BCDE составляет $ {\frac{3}{4}}$ площади ромба. Найдите углы ромба.

ВверхВниз   Решение


Автор: Бибиков П.

Дан треугольник $ABC$. Точки $A_1$, $A_2$, $B_1$, $B_2$ берутся на его описанной окружности так, что $A_1B_1\parallel AB$, $A_1A_2\parallel BC$, $B_1B_2\parallel AC$. Прямые $AA_2$ и $CA_1$ пересекаются в точке $A'$, а прямые $BB_2$ и $CB_1$ – в точке $B'$. Докажите, что все прямые $A'B'$ проходят через одну точку.

ВверхВниз   Решение


  Числа m и n называются дружественными, если сумма собственных делителей числа m равна n и, наоборот, сумма собственных делителей числа n равна m. Другими словами, числа m и n являются дружественными, если  σ(m) – m = n  и  σ(n) – n = m.
  Докажите, что если все три числа  p = 3·2k–1 – 1,  q = 3·2k – 1  и  r = 9·22k–1 – 1  – простые, то числа  m = 2kpq  и  n = 2kr  – дружественные. Постройте примеры дружественных чисел.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 182]      



Задача 35447

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площадь (прочее) ]
Сложность: 3
Классы: 9,10

На какое минимальное число равновеликих треугольников можно разрезать квадрат 8*8 с вырезанной угловой клеткой?
Прислать комментарий     Решение


Задача 66623

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площади криволинейных фигур ]
Сложность: 3
Классы: 9,10,11

Требуется разделить криволинейный треугольник на рисунке на 2 части одинаковой площади, проведя одну линию циркулем. Это можно сделать, выбрав в качестве центра одну из отмеченных точек и проводя дугу через другую отмеченную точку. Найдите способ это сделать и докажите, что он подходит.

Прислать комментарий     Решение

Задача 34917

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Куб ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3+
Классы: 10,11

На какое наименьшее число тетраэдров можно разбить куб?

Прислать комментарий     Решение

Задача 35481

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10

Докажите, что любой выпуклый многоугольник можно разрезать на остроугольные треугольники.
Прислать комментарий     Решение


Задача 58238

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Подобные фигуры ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Трапеции (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 182]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .