ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 289]      



Задача 55152

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 3
Классы: 8,9

Докажите, что сумма диагоналей выпуклого четырёхугольника меньше его периметра, но больше полупериметра.

Прислать комментарий     Решение


Задача 57311

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3
Классы: 8

При любом натуральном n из чисел an, bn и cn можно составить треугольник. Докажите, что среди чисел a, b и c есть два равных.
Прислать комментарий     Решение


Задача 57312

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что

a(b - c)2 + b(c - a)2 + c(a - b)2 + 4abc > a3 + b3 + c3.


Прислать комментарий     Решение

Задача 57313

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что

$\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3.


Прислать комментарий     Решение

Задача 57319

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 3
Классы: 8

Пусть ABCD — выпуклый четырехугольник, причем  AB + BD $ \leq$ AC + CD. Докажите, что AB < AC.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .