Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 66947

Темы:   [ Построения (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Пятиугольники ]
Сложность: 4
Классы: 8,9,10,11

Во вписанном пятиугольнике отметили середины четырех сторон, после чего сам пятиугольник стерли. Восстановите его.
Прислать комментарий     Решение


Задача 111298

Темы:   [ Сфера, описанная около тетраэдра ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

В шаре радиуса 7 через точку S проведены три равные хорды AA1 , BB1 и CC1 так, что AS = 8 , A1S = 3 , BS > B1S , CS > C1S . Найдите радиус сферы, описанной около пирамиды SABC .
Прислать комментарий     Решение


Задача 111299

Темы:   [ Сфера, описанная около тетраэдра ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

В шаре радиуса 9 через точку S проведены три равные хорды AA1 , BB1 и CC1 так, что AS = 4 , A1S = 8 , BS < B1S , CS < C1S . Найдите радиус сферы, описанной около пирамиды SABC .
Прислать комментарий     Решение


Задача 110204

Темы:   [ Биссекторная плоскость ]
[ Гомотетия помогает решить задачу ]
[ Симметрия относительно плоскости ]
[ Параллельность прямых и плоскостей ]
Сложность: 4+
Классы: 10,11

В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .
Прислать комментарий     Решение


Задача 67440

Темы:   [ Сфера, вписанная в пирамиду ]
[ Гомотетия помогает решить задачу ]
[ Инверсия помогает решить задачу ]
Сложность: 5
Классы: 10,11

Автор: Ивлев Б.М.

Вписанная сфера треугольной пирамиды $SABC$ касается основания $ABC$ в точке $P$, а боковых граней в точках $K$, $M$ и $N$. Прямые $PK$, $PM$, $PN$ пересекают плоскость, проходящую через середины боковых рёбер пирамиды, в точках $K'$, $M'$, $N'$. Докажите, что прямая $SP$ проходит через центр описанной окружности треугольника $K'M'N'$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .