ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В треугольнике известны углы A, B, C. Найдите углы шести треугольников, на которые данный треугольник разбивается его биссектрисами.

Вниз   Решение


Постройте окружность данного радиуса, проходящую через данную точку и касающуюся данной прямой.

ВверхВниз   Решение


Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7.  Хорды AD и BC продолжены до пересечения в точке M.
Найдите угол AMB.

ВверхВниз   Решение


На стороне BC треугольника ABC взята точка D такая, что $ \angle$CAD = 2$ \angle$DAB. Радиусы окружностей, вписанных в треугольники ADC и ADB, равны соответственно 8 и 4, а расстояние между точками касания этих окружностей с прямой BC равно $ \sqrt{129}$. Найдите AD.

ВверхВниз   Решение


На одной из двух данных пересекающихся сфер взяты точки A и B, на другой – C и D. Отрезок AC проходит через общую точку сфер. Отрезок BD проходит через другую общую точку сфер и параллелен прямой, содержащей центры сфер. Докажите, что проекции отрезков AB и CD на прямую AC равны.

ВверхВниз   Решение


Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.

ВверхВниз   Решение


Отрезки AD , BD и CD попарно перпендикулярны. Известно, что площадь треугольника ABC равна S , а площадь треугольника ABD равна Q . Найдите площадь ортогональной проекции треугольника ABD на плоскость ABC .

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 35110

Темы:   [ Плоскость, разрезанная прямыми ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3
Классы: 8,9,10

На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол.
Прислать комментарий     Решение


Задача 60323

Темы:   [ Плоскость, разрезанная прямыми ]
[ Индукция в геометрии ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 3
Классы: 8,9,10

На сколько частей делят плоскость n прямых общего положения, то есть таких, что никакие две не параллельны и никакие три не проходят через одну точку?
Прислать комментарий     Решение


Задача 98360

Темы:   [ Плоскость, разрезанная прямыми ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3
Классы: 6,7,8

Автор: Вялый М.Н.

а) Каким наименьшим числом прямых можно разрезать все клетки доски 3×3? (Чтобы клетка была разрезана, прямая должна проходить через внутреннюю точку этой клетки.)
б) Та же задача для доски 4×4.

Прислать комментарий     Решение

Задача 60324

Темы:   [ Плоскость, разрезанная прямыми ]
[ Индукция в геометрии ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 3
Классы: 8,9,10

На плоскости проведены n окружностей так, что любые две из них пересекаются в паре точек, и никакие три не проходят через одну точку. На сколько частей делят плоскость эти окружности?

Прислать комментарий     Решение

Задача 60325

Темы:   [ Плоскость, разрезанная прямыми ]
[ Индукция в геометрии ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 3
Классы: 10,11

На сколько частей делят пространство n плоскостей, проходящих через одну точку, если никакие три не имеют общей прямой?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .