ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 1006]      



Задача 32117

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3-
Классы: 7,8,9

На некотором острове 15 государств. У каждого из них хотя бы одно соседнее государство дружественное. Докажите, что найдётся государство, у которого чётное число дружественных соседей. (Два государства называются соседними, если у них имеется целый кусок общей границы.)

Прислать комментарий     Решение

Задача 60343

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

Прислать комментарий     Решение

Задача 60397

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 3-
Классы: 8,9,10

Параллелограмм пересекается двумя рядами прямых, параллельных его сторонам; каждый ряд состоит из m прямых.
Сколько параллелограммов можно выделить в образовавшейся сетке?

Прислать комментарий     Решение

Задача 60400

 [Полиномиальная теорема]
Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3-
Классы: 9,10,11

Докажите, что в равенстве   (x1 + ... + xm)n  =   коэффициенты  C(k1,..., km)  могут быть найдены по формуле  

Прислать комментарий     Решение

Задача 60401

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

При игре в преферанс каждому из трёх игроков раздают по 10 карт, а две карты кладут в прикуп. Сколько различных раскладов возможно в этой игре? (Считаются возможные раздачи без учета того, что каждые 10 карт достаются конкретному игроку.)

Прислать комментарий     Решение

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .