Страница:
<< 89 90 91 92
93 94 95 >> [Всего задач: 1007]
|
|
Сложность: 3- Классы: 9,10,11
|
Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?
|
|
Сложность: 3 Классы: 7,8,9,11
|
Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком-либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке 1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18, то наименьшая из разностей между номерами соседних (по
кругу) секторов равна 12 – 9 = 3.
Может ли указанная величина при нумерации в другом порядке быть больше 3?
Каково наибольшее возможное значение этой величины?
|
|
Сложность: 3 Классы: 6,7,8
|
Докажите, что среди любых шести человек есть либо трое попарно знакомых, либо трое попарно незнакомых.
|
|
Сложность: 3 Классы: 6,7,8
|
На складе имеется по 200 сапог 41, 42 и 43 размеров, причём среди этих 600 сапог 300 левых и 300 правых.
Докажите, что из них можно составить не менее 100 годных пар обуви.
Сколько существует десятизначных чисел, сумма цифр которых равна а) 2; б) 3; в) 4?
Страница:
<< 89 90 91 92
93 94 95 >> [Всего задач: 1007]