Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 1023]
На полке стоит 12 книг. Сколькими способами можно выбрать из них пять книг, никакие две из которых не стоят рядом?
|
|
|
Сложность: 3 Классы: 6,7,8
|
а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.
|
|
|
Сложность: 3 Классы: 7,8,9
|
Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось.
Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?
|
|
|
Сложность: 3 Классы: 7,8,9
|
В ряд выписаны числа 1, 2, 3, ..., n. За один ход разрешается поменять местами любые два числа.
Может ли после 1989 таких операций порядок чисел оказаться исходным?
|
|
|
Сложность: 3 Классы: 6,7,8
|
Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза.
Доказать, что карточки можно разложить так, чтобы все числа сверху были различны.
Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 1023]