ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 1311]      



Задача 60681

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
Сложность: 3
Классы: 7,8,9

Имеется 100 камней. Два игрока берут по очереди от 1 до 5 камней. Проигрывает тот, кто берет последний камень.
Определите выигрышную стратегию первого игрока.

Прислать комментарий     Решение

Задача 60895

Темы:   [ Взвешивания ]
[ Итерации ]
Сложность: 3
Классы: 7,8,9

Дан мешок сахарного песка, чашечные весы и гирька в 1 г. Можно ли за 10 взвешиваний отмерить 1 кг сахара?

Прислать комментарий     Решение

Задача 60898

Темы:   [ Взвешивания ]
[ Троичная система счисления ]
Сложность: 3
Классы: 7,8,9

Вы имеете право сделать 4 гири любого веса. Какие это должны быть гири, чтобы на весах из предыдущей задачи можно было взвесить грузы от 1 до 40 кг?

Прислать комментарий     Решение

Задача 60903

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Пусть l (n) — наименьшее число умножений, необходимое для нахождения xn. На примере чисел n = 15 и n = 63 покажите, что бинарный метод возведения в степень (смотри задачу 5.64) не всегда оптимален, то есть для некоторых n выполняется неравенство l (n) < b(n).

Прислать комментарий     Решение

Задача 61539

Темы:   [ Задачи-шутки ]
[ Квадратные корни (прочее) ]
Сложность: 3
Классы: 9,10

``1 = - 1''. Изучив комплексные числа, Коля Васин решил вывести формулу, которая носила бы его имя. После нескольких попыток ему это удалось:

$\displaystyle \sqrt{\frac{1}{-1}}$ = $\displaystyle \sqrt{\frac{-1}{1}}$ $\displaystyle \Rightarrow$ $\displaystyle {\frac{\sqrt1}{\sqrt{-1}}}$ = $\displaystyle {\frac{\sqrt{-1}}{\sqrt1}}$ $\displaystyle \Rightarrow$ $\displaystyle \sqrt{1}$$\displaystyle \sqrt{1}$ = $\displaystyle \sqrt{-1}$$\displaystyle \sqrt{-1}$ $\displaystyle \Rightarrow$ 1 = - 1.

После некоторых размышлений, Коля придумал более короткое доказательство своего тождества:

-1 = i2 = $\displaystyle \sqrt{-1}$ . $\displaystyle \sqrt{-1}$ = $\displaystyle \sqrt{(-1)(-1)}$ = $\displaystyle \sqrt{1}$ = 1.

Не ошибся ли где-нибудь Коля Васин?

Прислать комментарий     Решение

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .