Страница:
<< 218 219 220 221
222 223 224 >> [Всего задач: 1308]
|
|
Сложность: 4 Классы: 9,10,11
|
Исходное сообщение, состоящее из букв русского алфавита
и знака пробела (-) между словами, преобразуется в
цифровое сообщение заменой каждого его символа парой цифр
согласно следующей таблице:
Для зашифрования полученного цифрового сообщения используется
отрезок некоторой последовательности с периодом
1 4 7 6 5 6 3 6 9 0 1 6 3 6 5 6 7 4 9 0 (при этом неизвестно,
с какого места начинается последовательность).
При зашифровании каждая цифра сообщения складывается
с соответствующей цифрой отрезка и
заменяется последней цифрой полученной суммы.
Восстановите сообщение:
2339867216458160670617315588
(Задача с сайта
www.cryptography.ru.)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Сколько последовательностей {a1, a2, ..., a2n}, состоящих из единиц и минус единиц, обладают тем свойством, что a1 + a2 + ... + a2n = 0, а все частичные суммы a1, a1 + a2, ..., a1 + a2 + ... + a2n неотрицательны?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники?
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть Докажите равенство φ(n) = n(1 – 1/p1)...(1 – 1/ps).
а) пользуясь мультипликативностью функции Эйлера;
б) пользуясь формулой включения-исключения.
Определение функции Эйлера φ(n) см. в задаче 60758.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Проанализируйте при помощи ним-сумм игру
``Йога''
из
задачи
4.21.
Страница:
<< 218 219 220 221
222 223 224 >> [Всего задач: 1308]