ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 61181

 [Инвариантность двойного отношения]
Темы:   [ Дробно-линейные преобразования ]
[ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 10,11

Двойным отношением четырёх комплесных чисел называется число     (см. задачу 61180). Пусть w1, w2, w3, w4 – четыре точки плоскости, в которые дробно-линейное отображение    переводит данные четыре точки z1, z2, z3, z4. Докажите, что
W(w1, w2, w3, w4) = W(z1, z2, z3, z4).

Прислать комментарий     Решение

Задача 61189

Темы:   [ Дробно-линейные преобразования ]
[ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 10,11

Пусть уравнение некоторой прямой или окружности имеет вид  Azz + Bz – B z + C = 0.  Пусть образ этой линии при отображении    задается уравнением  A'zz + B'z – B' z + C' = 0,  где A' и C' также чисто мнимые числа. Выразите A', B' и C' через A, B и C.

Прислать комментарий     Решение

Задача 61193

 [Ортоцентр реугольника]
Темы:   [ Ортоцентр и ортотреугольник ]
[ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 10,11

Точки a1, a2 и a3 расположены на единичной окружности  zz = 1.
Докажите, что точка  h = a1 + a2 + a3  является ортоцентром треугольника с вершинами в точках a1, a2 и a3.

Прислать комментарий     Решение

Задача 61144

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрия комплексной плоскости ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 10,11

Докажите, что все корни уравнения  a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой.

Прислать комментарий     Решение

Задача 61197

 [Прямая Симсона]
Темы:   [ Прямая Симсона ]
[ Геометрия комплексной плоскости ]
Сложность: 4-
Классы: 10,11

Пусть u – точка на единичной окружности  z = 1  и u1, u2, u3 – основания перпендикуляров, опущенных из u на стороны a2a3, a1a3, a1a2 вписанного в эту окружностьтреугольника a1a2a3.
  а) Докажите, что числа u1, u2, u3 вычисляются по формулам

  б) Докажите, что точки u1, u2, u3 лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .