Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

Вниз   Решение


В выпуклом четырёхугольнике ABCD точка L является серединой стороны BC, точка M является серединой AD, точка N является серединой стороны AB. Найдите отношение площади треугольника LMN к площади четырёхугольника ABCD.

ВверхВниз   Решение


На плоскости дано  n > 4  точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее    различных выпуклых четырёхугольников с вершинами в этих точках.

ВверхВниз   Решение


Решить в целых числах уравнение  x² + y² + z² = 4(xy + yz + zx).

ВверхВниз   Решение


На стороне острого угла KOM взята точка L между O и K. Окружность проходит через точки K и L и касается луча OM в точке M. На дуге LM, не содержащей точки K, взята точка N. Расстояния от точки N до прямых OM, OK и KM равны m, k и l соответственно. Найдите расстояние от точки N до прямой LM.

ВверхВниз   Решение


Из точки A, расположенной вне окружности, проведены две касательные AM и AN (M и N — точки касания) и секущая, пересекающая окружность в точках P и Q. Пусть L — середина PQ. Докажите, что $ \angle$MLA = $ \angle$NLA.

ВверхВниз   Решение


Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 337]      



Задача 115375

Темы:   [ Наглядная геометрия в пространстве ]
[ Свойства разверток ]
Сложность: 2+
Классы: 5,6,7

Поросёнок Наф-Наф придумал, как сложить параллелепипед из одинаковых кубиков и оклеить его тремя квадратами без щелей и наложений. Сделайте это и вы.
Прислать комментарий     Решение


Задача 64930

Темы:   [ Замощения костями домино и плитками ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 5,6

Полина решила раскрасить свой клетчатый браслет размером 10×2 (рис. слева) волшебным узором из одинаковых фигурок (рис. справа), чередуя в них два цвета. Помогите ей это сделать.

Прислать комментарий     Решение

Задача 86912

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите площадь сечения пирамиды плоскостью, проведённой через середину высоты параллельно плоскости основания.
Прислать комментарий     Решение


Задача 86914

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.
Прислать комментарий     Решение


Задача 86920

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

В правильной треугольной пирамиде ABCP с вершиной P сторона основания равна 2. Через сторону основания BC проведено сечение, которое пересекает ребро PA в точке M , причём PM:MA = 1:3 , а площадь сечения равна 3. Найдите высоту пирамиды.
Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 337]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .