Страница: 1
2 3 >> [Всего задач: 13]
|
|
Сложность: 5- Классы: 10,11
|
Три равных правильных тетраэдра имеют общий центр. Могут ли все грани многогранника, являющегося их пересечением, быть равны?
|
|
Сложность: 2+ Классы: 8,9,10
|
На планете Тау Кита суша занимает больше половины всей площади.
Доказать, что таукитяне могут прорыть через центр планеты шахту,
соединяющую сушу с сушей.
|
|
Сложность: 3+ Классы: 10,11
|
Даны две пересекающиеся плоскости, в одной из которых лежит произвольный треугольник площади S.
Существует ли его параллельная проекция на вторую плоскость, имеющая ту же площадь S?
|
|
Сложность: 4- Классы: 10,11
|
Петя может располагать три отрезка в пространстве произвольным образом.
После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так,
чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
а) три отрезка имеют равные длины?
б) длины двух отрезков равны между собой и не равны длине третьего?
На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD взяты соответственно точки P, Q, R и Sб O – точка пересечения отрезков PR и QS.
Докажите,что если AP : AB = DR : DC и AS : AD = BQ : BC, то и SO : SQ = AP : AB, PQ : PR = AS : ;AD.
Страница: 1
2 3 >> [Всего задач: 13]