ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Для данного многочлена P(x) опишем способ, который позволяет
построить многочлен R(x), который имеет те же корни, что и
P(x), но все кратности 1. Положим Q(x) = (P(x), P'(x)) и R(x) = P(x)Q–1(x). Докажите, что |
Страница: 1 2 3 4 5 6 >> [Всего задач: 30]
Имеется замкнутая самопересекающаяся ломаная. Известно, что она пересекает каждое свое звено ровно один раз. Докажите, что число звеньев чётно.
Две точки окружности соединили ломаной, длина которой меньше диаметра окружности.
Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины
которых лежат на окружности.
Дана замкнутая ломаная $A_1A_2\dots A_n$ и окружность $\omega$, которая касается каждой из прямых $A_1A_2, A_2A_3,\dots, A_nA_1$. Звено ломаной называется хорошим, если оно касается окружности, и плохим в противном случае (т.е. если продолжение этого звена касается окружности). Докажите, что плохих звеньев четное количество.
Докажите, что всякую замкнутую ломаную периметра Р можно заключить в круг, радиус которого не превосходит Р/4.
Страница: 1 2 3 4 5 6 >> [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке