Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 330]
Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.
|
|
Сложность: 3+ Классы: 8,9,10
|
В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис).
Найдите отношение сторон прямоугольника.
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны параллелограмм ABCD и такая точка K, что AK = BD. Точка M – середина CK. Докажите, что ∠BMD = 90°.
В треугольнике АВС АС = 8, ВС = 5. Прямая, параллельная биссектрисе внешнего угла С, проходит через середину стороны АВ и точку Е на стороне АС. Найдите АЕ.
|
|
Сложность: 3+ Классы: 9,10
|
Точка I – центр вписанной окружности треугольника ABC, M – середина стороны AC, а W – середина дуги AB описанной окружности, не содержащей C. Оказалось, что ∠AIM = 90°. В каком отношении точка I делит отрезок CW?
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 330]