Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 9702]
|
|
Сложность: 3- Классы: 8,9,10
|
В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.
Сумма двух сторон прямоугольника равна 7 см, а сумма трёх его сторон равна 9,5 см. Найдите периметр прямоугольника.
|
|
Сложность: 3- Классы: 7,8,9
|
В треугольнике $ABC$ $\angle C=90^{\circ}$, $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. На отрезках $AB_0$ и $BA_0$ во внешнюю сторону построены как на основаниях равносторонние треугольники с вершинами $C_1$, $C_2$. Найдите угол $C_0C_1C_2$.
В треугольнике
ABC проведены высоты
AE,
BM и
CP. Известно, что
EM
параллельна
AB и
EP параллельна
AC. Докажите, что
MP параллельна
BC.
На стороне AC треугольника ABC взята точка A1, а на продолжении стороны BC за точку C взята точка C1, длина отрезка A1C равна 85% длины стороны AC, а длина отрезка BC1 равна 120% длины стороны BC. Сколько процентов площади треугольника ABC составляет площадь треугольника A1BC1?
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 9702]