Страница:
<< 1 2
3 4 >> [Всего задач: 16]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Король вызвал двух мудрецов и объявил им задание: первый задумывает семь различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу называет лишь четвёртое по величине из этих чисел, после чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться.
Могут ли мудрецы гарантированно справиться с заданием?
У пирата есть пять мешочков с монетами, по 30 монет в каждом. Он знает, что в одном лежат золотые монеты, в другом – серебряные, в третьем – бронзовые, а в каждом из двух оставшихся поровну золотых, серебряных и бронзовых. Можно одновременно достать любое число монет из любых мешочков и посмотреть, что это за монеты (вынимаются монеты один раз). Какое наименьшее число монет нужно достать, чтобы наверняка узнать содержимое хотя бы одного мешочка?
|
|
Сложность: 3+ Классы: 9,10,11
|
Мудрецам $A, B, C, D$ сообщили, что числа 1, 2, ..., 12 написаны по одному на 12 карточках и что эти карточки будут розданы им по три, причём каждый увидит лишь свои карточки. После раздачи мудрецы по очереди сказали следующее.
$A$: "На одной из моих карточек – число 8".
$B$: "Все числа на моих карточках простые".
$C$: "А все числа на моих – составные, причём имеют общий простой делитель".
$D$: "Тогда я знаю, какие карточки у каждого из вас".
Какие карточки у $A$, если все сказали правду?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан многоугольник, у которого каждые две соседние стороны перпендикулярны.
Назовём две его вершины не дружными, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В стране рыцарей (всегда говорят правду) и лжецов (всегда лгут) за круглым столом сидят в вершинах правильного десятиугольника 10 человек, среди которых есть лжецы. Путешественник может встать куда-то и спросить сидящих: "Каково расстояние от меня до ближайшего лжеца из вас?" После этого каждый отвечает ему. Какое минимальное количество вопросов должен задать путешественник так, чтобы гарантированно узнать, кто за столом лжецы? (Посторонних рядом нет, на стол вставать нельзя. Людей считайте точками. Все, включая путешественника, могут точно измерить любое расстояние.)
Страница:
<< 1 2
3 4 >> [Всего задач: 16]