ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 [Всего задач: 102]      



Задача 73672

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Перегруппировка площадей ]
[ Симметрия помогает решить задачу ]
[ Теорема Птолемея ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 5+
Классы: 8,9,10

Пусть a, b, c, d длины четырёх последовательных сторон четырёхугольника, S его площадь. Докажите неравенства:

а) S ab + cd;

б) S ac + bd.

в) Докажите, что если хотя бы в одном из этих неравенств достигается равенство, то четырёхугольник можно вписать в окружность.
Прислать комментарий     Решение


Задача 116343

Темы:   [ Средняя линия треугольника ]
[ Ортоцентр и ортотреугольник ]
[ Признаки подобия ]
[ Вписанные и описанные окружности ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Площадь четырехугольника ]
Сложность: 4
Классы: 8,9,10

Точки A1, B1 и C1 – основания высот треугольника ABC. Известно, что  A1B1 = 13,  B1C1 = 14,  A1C1 = 15.  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .