Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 488]
|
|
Сложность: 4 Классы: 8,9,10,11
|
а) В таблицу 2×n (где n > 2) вписаны числа. Суммы во всех столбцах различны. Докажите, что можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны.
б) В таблицу 100×100 вписаны числа. Суммы во всех столбцах различны. Всегда ли можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны?
|
|
Сложность: 4 Классы: 8,9,10
|
Квадрат разбит на n² ≥ 4 прямоугольников 2(n – 1) прямыми, из которых n – 1 параллельны одной стороне квадрата, а остальные n – 1 – другой. Докажите, что можно выбрать 2n прямоугольников разбиения таким образом, что для каждых двух выбранных прямоугольников один из них можно поместить в другой (возможно, предварительно повернув).
|
|
Сложность: 4 Классы: 10,11
|
Каждое целое число на координатной прямой покрашено в один из двух цветов – белый или чёрный, причём числа 2016 и 2017 покрашены разными цветами. Обязательно ли найдутся три одинаково покрашенных целых числа, сумма которых равна нулю?