ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1659]      



Задача 54193

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Найдите расстояние от центра окружности радиуса 10 до хорды, равной 12.

Прислать комментарий     Решение

Задача 54194

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
Сложность: 2+
Классы: 8,9

Прямая, проходящая через точку M, удалённую от центра окружности радиуса 10 на расстояние, равное 26, касается окружности в точке A. Найдите AM.

Прислать комментарий     Решение

Задача 54304

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

Один из катетов прямоугольного треугольника на 10 больше другого и на 10 меньше гипотенузы. Найдите гипотенузу этого треугольника.

Прислать комментарий     Решение

Задача 78025

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 8,9

Дан прямоугольный треугольник ABC. Из вершины B прямого угла проведена медиана BD. Пусть K – точка касания стороны AD треугольника ABD с вписанной окружностью этого треугольника. Найти острые углы треугольника ABC, если K делит AD пополам.

Прислать комментарий     Решение

Задача 98334

Темы:   [ Правильный (равносторонний) треугольник ]
[ Осевая и скользящая симметрии (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 6,7,8

Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1659]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .