Страница:
<< 1 2 3 4 5 6 [Всего задач: 29]
|
|
Сложность: 4+ Классы: 8,9,10
|
Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от
хотя бы одной своей стороны.
|
|
Сложность: 5- Классы: 8,9,10
|
В каждый узел бесконечной клетчатой бумаги воткнута
вертикальная булавка. Иголка длины
l лежит на бумаге параллельно
линиям сетки. При каких
l иголку можно повернуть на 90°,
не выводя из плоскости бумаги? Иголку разрешается как угодно
двигать по плоскости, но так, чтобы она проходила между булавками;
толщиной булавок и иголки пренебречь.
|
|
Сложность: 5 Классы: 9,10,11
|
n одинаковых монет лежат на столе, образуя замкнутую цепочку. Центры монет образуют выпуклый многоугольник. Сколько оборотов сделает монета такого же размера за время, пока она один раз прокатится по внешней стороне всей цепочки, как показано на рисунке?
Как изменится ответ, если радиус этой монеты в k раз больше радиуса каждой из монет цепочки?
|
|
Сложность: 4- Классы: 8,9,10
|
Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что угол MKN прямой. (Можно считать, что точки C и D лежат по разные стороны от точки A.)
Страница:
<< 1 2 3 4 5 6 [Всего задач: 29]