|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В вершинах выпуклого n-угольника расставлены m фишек (m > n). За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно n. |
Страница: << 1 2 3 >> [Всего задач: 12]
Какое из чисел больше: 3111 или 1714?
Какое из чисел
Докажите, что для любого натурального n в десятичной записи чисел 2002n и 2002n + 2n одинаковое число цифр.
Обозначим через S(m) сумму цифр натурального числа m. Докажите, что существует бесконечно много таких натуральных n, что S(3n) ≥ S(3n+1).
Страница: << 1 2 3 >> [Всего задач: 12] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|