Страница:
<< 8 9 10 11 12 13 14 >> [Всего задач: 126]
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?
|
|
Сложность: 3+ Классы: 7,8,9
|
На шахматной доске 100×100 расставлено 100 не бьющих друг друга ферзей.
Докажите, что в каждом угловом квадрате 50×50 находится хотя бы один
ферзь.
|
|
Сложность: 3+ Классы: 8,9,10
|
На окружности радиуса 1 отмечена точка
O и из неё циркулем делается
засечка вправо радиусом
l. Из полученной точки
O1 в ту же сторону тем же
радиусом делается вторая засечка, и так делается 1968 раз. После этого
окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться?
|
|
Сложность: 3+ Классы: 8,9,10
|
На прямоугольном листе клетчатой бумаги размером
m×
n клеток расположено несколько квадратов, стороны которых идут по вертикальным и горизонтальным линиям бумаги. Известно, что никакие два квадрата не совпадают и никакой квадрат не содержит внутри себя другой квадрат. Каково наибольшее число таких квадратов?
|
|
Сложность: 3+ Классы: 8,9,10
|
В клетчатом квадрате
10×10 отмечены центры всех единичных квадратиков
(всего 100 точек). Какое наименьшее число прямых, не параллельных сторонам
квадрата,
нужно провести, чтобы вычеркнуть все отмеченные точки?
Страница:
<< 8 9 10 11 12 13 14 >> [Всего задач: 126]