Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 268]
|
|
Сложность: 3+ Классы: 9,10,11
|
Высота каждой из 2019 ступенек «лестницы» (см. рисунок) равна 1, а ширина увеличивается от 1 до 2019. Правда ли, что отрезок, соединяющий левую нижнюю и правую верхнюю точки этой лестницы, не пересекает лестницу?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
По кругу лежит $2n + 1$ монета орлом вверх. Двигаясь по часовой стрелке, делают $2n + 1$ переворот: переворачивают какую-то монету, одну монету пропускают и переворачивают следующую, две монеты пропускают и переворачивают следующую, три монеты пропускают и переворачивают следующую, и т.д., наконец пропускают 2n монет и переворачивают следующую. Докажите, что теперь ровно одна монета лежит решкой вверх.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
По кругу стоят буквы A и B, всего 41 буква. Можно заменять ABA на B и наоборот, а также BAB на A и наоборот.
Верно ли, что из любого начального расположения можно получить такими операциями круг, на котором стоит ровно одна буква?
Имеются два набора из чисел 1 и –1, в каждом по 1958 чисел. Доказать, что за некоторое число шагов можно превратить первый набор во второй, если на каждом
шагу разрешается одновременно изменить знак у любых 11 чисел первого набора.
(Два набора считаются одинаковыми, если у них на одинаковых местах стоят
одинаковые числа.)
Жюри олимпиады решило по её результатам сопоставить каждому участнику
натуральное число таким образом, чтобы по этому числу можно было однозначно
восстановить баллы, полученные участником за каждую задачу, и чтобы из каждых
двух школьников большее число сопоставлялось тому, кто набрал большую сумму
баллов. Помогите жюри решить эту задачу!
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 268]