ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что геометрическое место точек пересечения диагоналей
четырехугольников ABCD, у которых стороны AB и CD лежат на
двух данных прямых l1 и l2, а стороны
BC и AD пересекаются в данной точке P, является прямой,
проходящей через точку Q пересечения прямых l1 и l2.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]
Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей.
В треугольнике ABC сторона BC равна полусумме двух других сторон. Через точку A и середины B', C' сторон AB и AC проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром I вписанной окружности треугольника ABC.
В треугольнике ABC сторона BC равна полусумме двух других сторон. Доказать, что биссектриса угла A перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника.
Дан треугольник ABC, причём сторона BC равна полусумме двух других сторон. Доказать, что в таком треугольнике вершина A, середины сторон AB и AC и центры вписанной и описанной окружностей лежат на одной окружности (сравните с задачей 4 для 9 класса).
Пусть A1A2...An – правильный многоугольник с нечётным числом сторон, M – произвольная точка на дуге A1An окружности, описанной около многоугольника. Докажите, что сумма расстояний от точки M до вершин с нечётными номерами равна сумме расстояний от M до вершин с чётными номерами.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке