ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четыре одинаковых кубика расположили на столе так, как показано на рисунке. Одна из граней каждого кубика покрашена в чёрный цвет. За один шаг разрешается повернуть одинаковым образом оба кубика из одного ряда (вертикального или горизонтального). Докажите, что, независимо от начального расположения чёрных граней, за несколько таких шагов можно расположить кубики чёрными гранями вверх. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 26]
Внутри угла даны две точки A и B. Постройте
окружность, проходящую через эти точки и высекающую на сторонах угла
равные отрезки.
Даны окружность O, прямая a, пересекающая её, и точка M. Через точку M провести секущую b так, чтобы её часть, заключённая внутри окружности O, делилась пополам в точке её пересечения с прямой a.
Постройте окружность данного радиуса, высекающую на данной прямой отрезок, равный данному.
Даны окружность S, точка A на ней и прямая l.
Постройте окружность, касающуюся данной окружности в точке A и данной
прямой.
На плоскости даны три точки. Построить три окружности, касающиеся друг друга в этих точках. Разобрать все случаи.
Страница: 1 2 3 4 5 6 >> [Всего задач: 26]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке