ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 603]      



Задача 86494

Темы:   [ Периметр треугольника ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 7,8

Отрезки АС и BD пересекаются в точке О. Периметр треугольника АВС равен периметру треугольника АВD, а периметр треугольника ACD равен периметру треугольника BCD. Найдите длину АО, если ВО = 10 см.

Прислать комментарий     Решение

Задача 97839

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Биссектрисы BD и CE треугольника ABC пересекаются в точке O.
Докажите, что если  OD = OE,  то либо треугольник равнобедренный, либо его угол при вершине A равен 60°.

Прислать комментарий     Решение

Задача 98537

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 9,10,11

Высотой пятиугольника назовём отрезок перпендикуляра, опущенного из вершины на противоположную сторону, а медианой – отрезок, соединяющий вершину с серединой противоположной стороны. Известно, что в некотором пятиугольнике равны десять длин – длины всех высот и всех медиан. Докажите, что этот пятиугольник – правильный.

Прислать комментарий     Решение

Задача 108901

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

На стороне BC треугольника ABC отмечены такие точки M и N, что  CM = MN = NB.  К стороне BC в точке N восставлен перпендикуляр, пересекающий сторону AB в точке K. Оказалось, что площадь треугольника AMK в 4,5 раза меньше площади исходного треугольника. Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Задача 115315

Темы:   [ Вспомогательные подобные треугольники ]
[ Геометрические неравенства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

На сторонах AB, AC и BC треугольника ABC взяли точки K, L и M соответственно так, что  ∠A = ∠KLM = ∠C.
Докажите, что если  AL + LM + MB > CL + LK + KB,  то  LM < LK.

Прислать комментарий     Решение

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .