Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 158]
|
|
Сложность: 3 Классы: 7,8,9
|
Какое наименьшее количество клеток нужно отметить на шахматной доске, чтобы
1) среди отмеченных клеток не было соседних (имеющих общую сторону или общую вершину),
2) добавление к этим клеткам любой одной клетки нарушало пункт 1?
|
|
Сложность: 3 Классы: 7,8,9
|
В клетках доски n×n произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на n + 1.
а) К любому ли шестизначному числу, начинающемуся с цифры 5, можно приписать еще 6 цифр так, чтобы полученное 12-значное число было полным квадратом?
б) Тот же вопрос про число, начинающееся с 1.
в) Найдите для каждого n такое наименьшее k = k(n), что к каждому n-значному числу можно приписать еще k цифр так, чтобы полученное (n+k)-значное число было полным квадратом.
|
|
Сложность: 3 Классы: 7,8,9
|
На шахматной доске 8×8 стоит кубик (нижняя грань совпадает с одной из клеток доски). Его прокатили по доске, перекатывая через рёбра, так, что кубик побывал на всех клетках (на некоторых, возможно, несколько раз). Могло ли случиться, что одна из его граней ни разу не лежала на доске?
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
В клетках квадрата 3×3 записаны буквы (см. рисунок). Можно ли их расставить так, чтобы каждые две буквы, исходно отстоявшие на ход коня,
после перестановки оказались в клетках, отстоящих на ход короля?
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 158]