ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 168]      



Задача 78022

Темы:   [ Исследование квадратного трехчлена ]
[ Средние величины ]
[ Квадратные уравнения. Теорема Виета ]
[ Фазовая плоскость коэффициентов ]
Сложность: 3
Классы: 8,9,10,11

Известно, что модули всех корней уравнений  x² + Ax + B = 0,  x² + Cx + D = 0  меньше единицы. Доказать, что модули корней уравнения
x² + ½ (A + C)x + ½ (B + D)x = 0  также меньше единицы. A, B, C, D – действительные числа.

Прислать комментарий     Решение

Задача 78069

Темы:   [ Числовые таблицы и их свойства ]
[ Средние величины ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

Прислать комментарий     Решение

Задача 79380

Темы:   [ Линейные неравенства и системы неравенств ]
[ Средние величины ]
Сложность: 3
Классы: 9

Доказать, что если  a1a2a3 ≤ ... ≤ a10,  то   1/6 (a1 + ... + a6) ≤ 1/10 (a1 + ... + a10).

Прислать комментарий     Решение

Задача 98357

Темы:   [ Задачи на движение ]
[ Средние величины ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

По неподвижному эскалатору человек спускается быстрее, чем поднимается. Что быстрее: спуститься и подняться по поднимающемуся эскалатору или спуститься и подняться по спускающемуся эскалатору? (Предполагается, что все скорости, о которых идет речь, постоянны, причём скорости эскалатора при движении вверх и вниз одинаковы, а скорость человека относительно эскалатора всегда больше скорости эскалатора.)

Прислать комментарий     Решение

Задача 105053

Темы:   [ Инварианты ]
[ Средние величины ]
Сложность: 3
Классы: 7,8,9

На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее арифметическое и среднее гармоническое. Утром первого дня на доске были написаны числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го дня.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 168]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .