Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 4204]
|
|
Сложность: 3- Классы: 6,7,8
|
Вдоль правой стороны дороги припарковано 100 машин. Среди них – 30 красных, 20 жёлтых и 20 розовых мерседесов. Известно, что никакие два мерседеса разного цвета не стоят рядом. Докажите, что тогда какие-то три мерседеса, стоящие подряд, одного цвета.
|
|
Сложность: 3- Классы: 8,9,10
|
На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра
до центров всех чёрных клеток обозначена через a, а до центров всех белых
клеток – через b. Докажите, что a = b.
|
|
Сложность: 3- Классы: 7,8,9
|
Положительные числа a, b, c таковы, что a ≥ b ≥ c и a + b + c ≤ 1. Докажите, что a² + 3b² + 5c² ≤ 1.
[Сейчас вылетит птичка]
|
|
Сложность: 3- Классы: 6,7
|
В фотоателье залетели 20 птиц – 8 скворцов, 7 трясогузок и 5 дятлов. Каждый раз, как только фотограф щелкнет затвором фотоаппарата, какая-то одна из птичек улетит (насовсем). Сколько кадров сможет сделать фотограф, чтобы быть уверенным: у него останется не меньше четырёх птиц одного вида, и не меньше трёх – другого?
Даны точки A(–1, 5) и B(3, –7). Найдите расстояние от начала координат до середины отрезка AB.
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 4204]