Страница: 1 [Всего задач: 3]
|
|
Сложность: 7+ Классы: 9,10,11
|
Каждая из шести окружностей касается четырех
из оставшихся пяти (рис.). Докажите, что для любой
пары несоприкасающихся окружностей (из этих шести) их
радиусы и расстояние между центрами связаны соотношением
d2 = r12 + r22±6r1r2 (к плюск — если окружности не
лежат одна внутри другой, к минуск — в противном случае).
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На высотах AA0, BB0, CC0 остроугольного неравностороннего треугольника ABC отметили соответственно точки A1,B1,C1 так, что AA1=BB1=CC1=R, где R – радиус описанной окружности треугольника ABC. Докажите, что центр описанной окружности треугольника A1B1C1 совпадает с центром вписанной окружности треугольника ABC.
|
|
Сложность: 3+ Классы: 9,10
|
Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Найдите геометрическое место таких точек M, что радиусы описанных окружностей треугольников AMB и CMB равны.
Страница: 1 [Всего задач: 3]