ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Разрежьте каждый из равносторонних треугольников со сторонами 2 и 3 на три части и сложите из всех полученных частей равносторонний треугольник. Можно ли выписать в ряд по одному разу цифры от 1 до 9 так, чтобы между единицей и двойкой, двойкой и тройкой, ..., восьмёркой и девяткой было нечётное число цифр? Купец случайно перемешал конфеты первого сорта (по 3 руб. за фунт) и конфеты второго сорта (по 2 руб. за фунт). По какой цене надо продавать эту смесь, чтобы выручить ту же сумму, если известно, что первоначально общая стоимость всех конфет первого сорта была равна общей стоимости всех конфет второго сорта? Многочлен степени $n > 1$ имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$ Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D. Дан числовой набор x1, ..., xn. Рассмотрим функцию Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?
Даны две окружности. Первая из них вписана в треугольник ABC,
вторая касается стороны AC и продолжений сторон AB и BC. Известно,
что эти окружности касаются друг друга, сумма квадратов их радиусов равна 45,
а угол ABC равен
arccos |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 213]
Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.
С помощью циркуля и линейки постройте треугольник по радиусу описанной окружности, стороне и высоте, проведённой к другой стороне.
Окружность касается стороны BC треугольника ABC в точке M, а продолжений сторон AB и AC — в точках P и Q соответственно. Вписанная окружность треугольника ABC касается стороны BC в точке K, а стороны AB — в точке L. Докажите, что: а) отрезок AP равен полупериметру p треугольника ABC; б) BM = CK; в) BC = PL.
Даны две окружности. Первая окружность вписана в треугольник ABC,
вторая касается стороны AC и продолжений сторон AB и BC. Известно,
что эти окружности касаются друг друга, сумма кубов их радиусов равна 152,
а угол BAC равен
arccos
Даны две окружности. Первая из них вписана в треугольник ABC,
вторая касается стороны AC и продолжений сторон AB и BC. Известно,
что эти окружности касаются друг друга, сумма квадратов их радиусов равна 45,
а угол ABC равен
arccos
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 213]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке