ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Углы, опирающиеся на равные дуги и равные хорды
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На окружности радиуса 3, описанной около правильного треугольника, взята точка E. Известно, что расстояние от точки E до одной из вершин треугольника равно 5. Найдите разность расстояний от точки E до двух других вершин треугольника. Решение |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 499]
На окружности радиуса 3, описанной около правильного треугольника, взята точка E. Известно, что расстояние от точки E до одной из вершин треугольника равно 5. Найдите разность расстояний от точки E до двух других вершин треугольника.
Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна ½ AC² sin∠A.
Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке. Докажите, что ∠APB = ∠CQD.
Окружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны.
В равнобедренном треугольнике ABC (AB = BC) на стороне AB выбрана точка D, и вокруг треугольников ADC и BDC описаны окружности S1 и S2 соответственно. Касательная, проведённая к S1 в точке D, пересекает второй раз окружность S2 в точке M. Докажите, что BM || AC.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|