Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Алик, Боря и Вася собирали грибы. Боря собрал грибов на 20% больше, чем Алик, но на 20% меньше, чем Вася.
На сколько процентов больше Алика собрал грибов Вася?

Вниз   Решение


После того, как Наташа съела половину персиков из банки, уровень компота понизился на одну треть.
На какую часть (от полученного уровня) понизится уровень компота, если съесть половину оставшихся персиков?

ВверхВниз   Решение


Имеется много одинаковых прямоугольных картонок размером a×b см, где a и b – целые числа, причём  a < b.  Известно, что из таких картонок можно сложить и прямоугольник 49×51 см, и прямоугольник 99×101 см. Можно ли по этим данным однозначно определить a и b?

ВверхВниз   Решение


Через точку C на окружности проведены касательная, а также хорда BC и хорда DC, BD = c. Расстояния от точек B и D до касательной равны b и d. Найдите площадь треугольника BCD.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 149]      



Задача 67030

Темы:   [ Симметрия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 9,10,11

В остроугольном треугольнике $ABC$ проведена биссектриса $AL$. На продолжении отрезка $LA$ за точку $A$ выбрана точка $K$ так, что $AK = AL$. Описанные окружности треугольников $BLK$ и $CLK$ пересекают отрезки $AC$ и $AB$ в точках $P$ и $Q$ соответственно. Докажите, что прямые $PQ$ и $BC$ параллельны.
Прислать комментарий     Решение


Задача 102405

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

В трапеции KLMN известно, что LM$ \Vert$KN, $ \angle$KLM = $ {\frac{\pi}{2}}$, LM = l, KN = k, MN = a. Окружность проходит через точки M и N и касается прямой KL в точке A. Найдите площадь треугольника AMN.

Прислать комментарий     Решение


Задача 102406

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

Через точку C на окружности проведены касательная, а также хорда BC и хорда DC, BD = c. Расстояния от точек B и D до касательной равны b и d. Найдите площадь треугольника BCD.

Прислать комментарий     Решение


Задача 55411

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Прямая OA касается окружности в точке A, а хорда BC параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Докажите, что прямая KL делит отрезок OA пополам.

Прислать комментарий     Решение

Задача 55485

Темы:   [ Теорема косинусов ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

Из точки A к окружности радиусом R проводится касательная AM (M — точка касания). Секущая, проходящая через точку A, пересекает окружность в точках K и L, причём L — середина отрезка AK, а угол AMK равен 60o. Найдите площадь треугольника AMK.

Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .