ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите радиус и координаты центра окружности, заданной уравнением

                               а) (x - 3) 2 + (y + 2)2 = 16;

                               б) x2 + y2 - 2(x - 3y) - 15 = 0;

                               в) x2 + y2 = x + y + $ {\frac{1}{2}}$.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 217]      



Задача 116274

Темы:   [ Метод координат на плоскости ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 1°.
Найдите сумму абсцисс точек пересечения этих прямых с прямой  y = 100 – x.

Прислать комментарий     Решение

Задача 116316

Темы:   [ Метод координат ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

В четырёхугольнике PQRS найдите такую точку T , для которой отношение площадей треугольников RQT и PST было равно 2:1, а треугольников SRT и PQT — 1:5, если известны координаты всех его вершин: P(6;-2) , Q(3;4) , R(-3;4) , S(0;-2) .
Прислать комментарий     Решение


Задача 116317

Темы:   [ Метод координат ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

В четырёхугольнике ABCD найдите такую точку E , для которой отношение площадей треугольников EAB и ECD было равно 1:2, а треугольников EAD и EBC — 3:4, если известны координаты всех его вершин: A(-2;-4) , B(-2;3) , C(4;6) , D(4;-1) .
Прислать комментарий     Решение


Задача 116892

Темы:   [ Метод координат на плоскости ]
[ Иррациональные неравенства ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

Изобразите на координатной плоскости множество всех точек, координаты x и у которых удовлетворяют неравенству   .

Прислать комментарий     Решение

Задача 102722

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3
Классы: 8,9

Найдите радиус и координаты центра окружности, заданной уравнением

                               а) (x - 3) 2 + (y + 2)2 = 16;

                               б) x2 + y2 - 2(x - 3y) - 15 = 0;

                               в) x2 + y2 = x + y + $ {\frac{1}{2}}$.

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 217]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .