ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Опустить из данной точки A вне прямой l перпендикуляр на эту прямую, проведя не более трёх линий? (Третьей линией должен быть перпендикуляр.)

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 116416

Темы:   [ Перпендикулярные прямые ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Можно ли все прямые на плоскости разбить на пары перпендикулярных прямых?

Прислать комментарий     Решение

Задача 65365

Темы:   [ Перпендикулярные прямые ]
[ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
[ Радикальная ось ]
Сложность: 3+
Классы: 8,9,10,11

Через вершины B и C треугольника ABC провели перпендикулярно прямой BC прямые b и c соответственно. Серединные перпендикуляры к сторонам AC и AB пересекают прямые b и c в точках P и Q соответственно. Докажите, что прямая PQ перпендикулярна медиане AM треугольника ABC.

Прислать комментарий     Решение

Задача 65518

Темы:   [ Перпендикулярные прямые ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 9,10,11

В остроугольном треугольнике MKN проведена биссектриса KL. Точка X на стороне MK такова, что  KX = KN.  Докажите, что прямые KO и XL перпендикулярны (O – центр описанной окружности треугольника MKN).

Прислать комментарий     Решение

Задача 66097

Темы:   [ Перпендикулярные прямые ]
[ Векторы помогают решить задачу ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4
Классы: 9,10,11

Внутри треугольника ABC взята такая точка D, что  BD = CD,  ∠BDC = 120°.  Вне треугольника ABC взята такая точка E, что  AE = CE,  ∠AEC = 60°  и точки B и E находятся в разных полуплоскостях относительно AC. Докажите, что  ∠AFD = 90°,  где F – середина отрезка BE.

Прислать комментарий     Решение

Задача 102816

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Перпендикулярные прямые ]
[ Пересекающиеся окружности ]
Сложность: 2+
Классы: 7,8

Опустить из данной точки A вне прямой l перпендикуляр на эту прямую, проведя не более трёх линий? (Третьей линией должен быть перпендикуляр.)

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .