ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сколько квадратов со сторонами по линиям сетки можно нарисовать на доске 8×8?

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1341]      



Задача 102882

Тема:   [ Комбинаторная геометрия ]
Сложность: 2+
Классы: 7,8

Сколько квадратов со сторонами по линиям сетки можно нарисовать на доске 8×8?
Прислать комментарий     Решение


Задача 35238

Темы:   [ Раскраски ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3-
Классы: 7,8,9

Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
Прислать комментарий     Решение


Задача 35622

Темы:   [ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 7,8,9

Существует ли четырехугольник, который можно разрезать двумя прямыми на 6 кусков?
Прислать комментарий     Решение


Задача 102850

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3-
Классы: 7,8

Режем прямоугольник. Разрежьте прямоугольник 7 × 15 на фигурки


Прислать комментарий     Решение

Задача 103733

Темы:   [ Системы точек ]
[ Правильный (равносторонний) треугольник ]
[ Перенос помогает решить задачу ]
Сложность: 3-
Классы: 5,6,7,8

Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1341]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .