ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сторонах AB, BC, CD и DA выпуклого четырехугольника ABCD
взяты точки K, L, M и N соответственно, причем
AK : KB = DM : MC = Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей. Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин? Внутри цилиндра лежат два шара радиуса r и один шар радиуса 2r так, что каждый шар касается двух других, верхнего основания цилиндра и его боковой поверхности. Найдите радиус основания цилиндра.
В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на
гипотенузу, а точка L делит отрезок HC пополам. Найдите угол LBC, если
известно, что
AH =
Решите ребус: АХ×УХ = 2001. Решите ребус: БАО×БА×Б = 2002. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 187]
Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.
Решите ребус: БАО×БА×Б = 2002.
В конце четверти Вовочка выписал подряд в строчку свои текущие отметки по пению и поставил между некоторыми из них знак умножения. Произведение получившихся чисел оказалось равным 2007. Какая отметка выходит у Вовочки в четверти по пению? ("Колов" учительница пения не ставит.)
Какое наименьшее натуральное число не является делителем 50!?
Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 187]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке