Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 158]
|
|
Сложность: 2+ Классы: 6,7,8
|
Раскрасьте плоскость в три цвета так, чтобы на каждой
прямой были точки не более, чем двух цветов, и каждый цвет был бы
использован.
|
|
Сложность: 3- Классы: 7,8,9
|
Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
|
|
Сложность: 3- Классы: 7,8,9
|
Прямая раскрашена в два цвета. Докажите, что найдётся отрезок, оба конца и середина которого покрашены в один и тот же цвет.
|
|
Сложность: 3- Классы: 6,7,8,9
|
Прямая раскрашена в два цвета.
Докажите, что на ней найдутся такие три точки A, B и C, окрашенные в один цвет, что точка B является серединой отрезка AC.
|
|
Сложность: 3- Классы: 7,8,9
|
У Игоря и Вали есть по белому квадрату 8×8, разбитому на клетки 1×1. Они закрасили по одинаковому числу клеток на своих квадратах в синий цвет. Докажите, что удастся так разрезать эти квадраты на доминошки 2×1, что и из доминошек Игоря и из доминошек Вали можно будет сложить по квадрату 8×8 с одной и той же синей картинкой.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 158]