ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шабат Г.Б.

Бесконечная последовательность чисел xn определяется условиями:   xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда x1 рационально.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 112]      



Задача 98221

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Уравнения с модулями ]
[ Обратный ход ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

{an} – последовательность чисел между 0 и 1, в которой следом за x идёт  1 – |1 – 2x|.
  а) Докажите, что если a1 рационально, то последовательность, начиная с некоторого места, периодическая.
  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то a1 рационально.

Прислать комментарий     Решение

Задача 98234

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Числа Фибоначчи ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9,10

Можно ли из последовательности  1, ½, ⅓, ... выбрать (сохраняя порядок)
  а) сто чисел,
  б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (ak = ak–2ak–1)?

Прислать комментарий     Решение

Задача 107761

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Обратный ход ]
[ Уравнения с модулями ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

Бесконечная последовательность чисел xn определяется условиями:   xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда x1 рационально.

Прислать комментарий     Решение

Задача 109727

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9,10

На доску последовательно выписываются числа  a1 = 1,  a2, a3, ... по следующим правилам: an+1 = an – 2,  если число  an – 2  – натуральное и еще не выписано на доску, в противном случае  an+1 = an + 3.  Докажите, что все квадраты натуральных чисел появятся в этой последовательности при прибавлении 3 к предыдущему числу.

Прислать комментарий     Решение

Задача 116876

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 10,11

Функция f(x) такова, что для всех значений x выполняется равенство  f(x + 1) = f(x) + 2x + 3.  Известно, что  f(0) = 1.  Найдите f(2012).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .