ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждый из 1994 депутатов парламента дал пощечину ровно одному своему коллеге. Докажите, что можно составить парламентскую комиссию из 665 человек, члены которой не выясняли отношений между собой указанным выше способом.

   Решение

Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 383]      



Задача 78246

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Обход графов ]
Сложность: 3+
Классы: 7,8,9

Дана ладья, которой разрешается делать ходы только длиной в одну клетку. Доказать, что она может обойти все клетки прямоугольной шахматной доски, побывав на каждой клетке ровно один раз, и вернуться в начальную клетку тогда и только тогда, когда число клеток на доске чётно.

Прислать комментарий     Решение

Задача 64656

Темы:   [ Наглядная геометрия в пространстве ]
[ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Связность и разложение на связные компоненты ]
[ Проектирование помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Марачёв А.

Из кубиков 1×1×1 склеен куб 3×3×3. Какое наибольшее количество кубиков можно из него выкинуть, чтобы осталась фигура с такими двумя свойствами:
  - со стороны каждой грани исходного куба фигура выглядит как квадрат 3×3 (глядя перпендикулярно этой грани, мы не увидим просвета – видны 9 кубиков фигуры);
  - переходя в фигуре от кубика к кубику через их общую грань, можно от каждого кубика добраться до любого другого?

Прислать комментарий     Решение

Задача 65816

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
Какое наибольшее количество клеток может обойти эта фигура на доске 15×15? (Начать обход разрешается с любой клетки.)

Прислать комментарий     Решение

Задача 73716

Темы:   [ Остовы многогранных фигур ]
[ Обходы многогранников ]
[ Обход графов ]
[ Степень вершины ]
[ Перестройки ]
Сложность: 4-
Классы: 10,11

Какую наименьшую длину должен иметь кусок проволоки, чтобы из него можно было согнуть каркас куба с ребром 10 см?
(Проволока может проходить по одному ребру дважды, загибаться на 90° и 180°, но ломать её нельзя.)

Прислать комментарий     Решение

Задача 107762

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Степень вершины ]
Сложность: 4-
Классы: 8,9,10

Каждый из 1994 депутатов парламента дал пощечину ровно одному своему коллеге. Докажите, что можно составить парламентскую комиссию из 665 человек, члены которой не выясняли отношений между собой указанным выше способом.

Прислать комментарий     Решение

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .