ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 383]      



Задача 110222

Темы:   [ Остовы многогранных фигур ]
[ Куб ]
[ Подсчет двумя способами ]
[ Степень вершины ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 7,8,9

Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)

Прислать комментарий     Решение

Задача 115371

Темы:   [ Раскладки и разбиения ]
[ Задачи с ограничениями ]
[ Четность и нечетность ]
[ Степень вершины ]
Сложность: 4-
Классы: 8,9

В компании из семи человек любые шесть могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.

Прислать комментарий     Решение

Задача 115396

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Обход графов ]
[ Подсчет двумя способами ]
[ Планарные графы. Формула Эйлера ]
Сложность: 4-
Классы: 8,9,10,11

В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза.

Прислать комментарий     Решение

Задача 30817

Темы:   [ Теория графов (прочее) ]
[ Раскраски ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Степень вершины ]
Сложность: 4
Классы: 7,8

Каждое из рёбер полного графа с 9 вершинами покрашено в синий или красный цвет.
Докажите, что либо есть четыре вершины, все рёбра между которыми – синие, либо есть три вершины, все рёбра между которыми – красные.

Прислать комментарий     Решение

Задача 31095

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Четность и нечетность ]
[ Деревья ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 6,7,8

а) В графе есть эйлеров путь. Доказать, что граф связен и вершин с нечётной степенью в нём не больше двух.
б) Доказать обратное: если в связном графе вершин с нечётной степенью не больше двух, то в нём есть эйлеров путь.

Прислать комментарий     Решение

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .