Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что если многочлен  f(x) степени n принимает целые значения в точках  x = 0, 1, ..., n,  то он принимает целые значения во всех целых точках.

Вниз   Решение


Найдите расстояние от точки D(1;3;2) до плоскости, проходящей через точки A(-3;0;1), B(2;1;-1) и C(-2;2;0) .

ВверхВниз   Решение


На ребре BB1 куба ABCDA1B1C1D1 взята точка F так, что B1F = BB1 , на ребре C1D1 – точка E так, что D1E = C1D1 . Какое наибольшее значение может принимать отношение , где точка P лежит на луче DE , а точка Q – на прямой A1F ?

ВверхВниз   Решение


Вводится сначала число N, а затем N чисел. Выведите эти N чисел
в следующем порядке: сначала выводятся все нечетные числа в том порядке,
в каком они встречались во входном файле, а затем - все четные.

Входные данные
Вводится число N (0<N<100), а затем N чисел из диапазона Integer.

Пример входного файла
7
2 4 1 3 5 3 1

Пример выходного файла
1 3 5 3 1 2 4

ВверхВниз   Решение


Сфера радиуса 4 с центром в точке Q касается трёх параллельных прямых в точках F , G и H . Известно, что площадь треугольника QGH равна 4 , а площадь треугольника FGH больше 16. Найдите угол GFH .

ВверхВниз   Решение


Докажите, что если вершины шестиугольника ABCDEF лежат на одной конике, то точки пересечения продолжений его противоположных сторон (т. е. прямых AB и DE, BC и EF, CD и AF) лежат на одной прямой (Паскаль).

ВверхВниз   Решение


Докажите, что

| x| + | y| + | z|$\displaystyle \le$| x + y - z| + | x - y + z| + |-x + y + z|,

где x, y, z — действительные числа.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 55]      



Задача 86496

Тема:   [ Неравенства с модулями ]
Сложность: 2
Классы: 8,9

Решите неравенство:
|x + 2000| < |x - 2001|.
Прислать комментарий     Решение


Задача 104084

Тема:   [ Уравнения с модулями ]
Сложность: 2
Классы: 7,8,9

Решите уравнение: |x - 2005| + |2005 - x| = 2006.
Прислать комментарий     Решение


Задача 35150

Тема:   [ Модуль числа ]
Сложность: 2+
Классы: 8,9

Решите уравнение |x-2|+|x-1|+|x|+|x+1|+|x+2|=6.
Прислать комментарий     Решение


Задача 107790

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 2+
Классы: 7,8,9

Докажите, что

| x| + | y| + | z|$\displaystyle \le$| x + y - z| + | x - y + z| + |-x + y + z|,

где x, y, z — действительные числа.
Прислать комментарий     Решение

Задача 107804

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 7,8,9

Докажите, что если для чисел a, b и c выполняются неравенства | a - b|$ \ge$| c|, | b - c|$ \ge$| a|, | c - a|$ \ge$| b|, то одно из этих чисел равно сумме двух других.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .