|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: P=σ ST4 , где σ = 5,7· 10-8 — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S = Задано правило, которое каждой паре чисел x, y ставит в соответствие некоторое число x*y, причём для любых x, y, z выполняются тождества: Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z выполнены тождества: x*x = 0 и x*(y*z) = (x*y) + z. |
Страница: 1 [Всего задач: 5]
f (x, y)=1/4(f (x+1, y)+ f (x-1, y)+f (x, y+1) + f (x, y-1)). Пусть f (x, y) и g(x, y) — гармонические функции. Докажите, что для любых a и b функция af (x, y) + bg(x, y) также будет гармонической.
Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z выполнены тождества: x*x = 0 и x*(y*z) = (x*y) + z.
Задано правило, которое каждой паре чисел x, y ставит в соответствие некоторое число x*y, причём для любых x, y, z выполняются тождества:
Страница: 1 [Всего задач: 5] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|