ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Про треугольник $ABC$ известно, что точка, симметричная ортоцентру относительно центра описанной окружности, лежит на стороне $BC$. Пусть $A_1$ – основание высоты, проведенной из точки $A$. Докажите, что $A_1$ лежит на окружности, проходящей через середины трёх высот треугольника $ABC$. Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток). У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть? В клетках доски n×n произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на n + 1. В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)
AK – биссектриса треугольника ABC, P и Q – точки на двух других биссектрисах (или на их продолжениях) такие, что PA = PK и QA = QK. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 289]
В трапеции ABCD AD || BC) угол ADB в два раза меньше угла ACB. Известно, что BC = AC = 5 и AD = 6. Найдите площадь трапеции.
Вершины B и C треугольника ABC с прямым углом A скользят по сторонам прямого угла с вершиной P. Найдите геометрическое место вершин A, если точки P и A лежат:
Пусть CM – медиана треугольника ABC. Известно, что ∠A + ∠MCB = 90°. Докажите, что треугольник ABC – равнобедренный или прямоугольный.
В остроугольном треугольнике ABC угол B равен 60o, AM и CN — его высоты, а Q — середина стороны AC. Докажите, что треугольник MNQ — равносторонний.
AK – биссектриса треугольника ABC, P и Q – точки на двух других биссектрисах (или на их продолжениях) такие, что PA = PK и QA = QK.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 289]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке