|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В квадрат ABCD со стороной a вписана окружность, которая касается стороны CD в точке E. Две окружности пересекаются в точках A и B. К этим окружностям проведена общая касательная, которая касается окружностей в точках C и D. Докажите, что прямая AB делит отрезок CD пополам. Каждое ребро выпуклого многогранника параллельно перенесли на некоторый вектор так, что ребра образовали каркас нового выпуклого многогранника. Обязательно ли он равен исходному? В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что если ∠A = 45°, то B1C1 – диаметр окружности девяти точек треугольника ABC. B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник. Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми. На доске написаны числа 1, 2, 3, ..., 1989. Разрешается стереть любые два числа и написать вместо них разность этих чисел. В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°. Докажите, что sin( Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.) Существуют ли нецелые числа x и y, для которых {x}{y} = {x + y}? Наибольший угол остроугольного треугольника в пять раз больше наименьшего. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]
Определите вид треугольника (относительно его углов), если даны три стороны (или их отношения): 1) 2, 3, 4; 2) 3, 4, 5; 3) 4, 5, 6; 4) 10, 15, 18; 5) 68, 119, 170.
Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|