ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Трапеции
>>
Средняя линия трапеции
|
|||||||||||||
Версия для печати
Убрать все задачи Четырёхугольник ABCD описан около окружности ω. Продолжения сторон AB и CD пересекаются в точке O. Окружность ω1 касается стороны BC в точке K и продолжений сторон AB и CD; окружность ω2 касается стороны AD в точке L и продолжений сторон AB и CD. Известно, что точки O, K и L лежат на одной прямой. Докажите, что середины сторон BC, AD и центр окружности ω лежат на одной прямой. Решение |
Страница: << 16 17 18 19 20 21 22 [Всего задач: 107]
На боковых сторонах AB и AC равнобедренного треугольника ABC отметили точки K и L соответственно так, что AK = CL и ∠ALK + ∠LKB = 60°.
Четырёхугольник ABCD описан около окружности ω. Продолжения сторон AB и CD пересекаются в точке O. Окружность ω1 касается стороны BC в точке K и продолжений сторон AB и CD; окружность ω2 касается стороны AD в точке L и продолжений сторон AB и CD. Известно, что точки O, K и L лежат на одной прямой. Докажите, что середины сторон BC, AD и центр окружности ω лежат на одной прямой.
Страница: << 16 17 18 19 20 21 22 [Всего задач: 107] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|