Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 107]
Известно, что в трапецию можно вписать окружность.
Докажите, что окружности, построенные на боковых сторонах трапеции как на диаметрах, касаются друг друга.
Внутри выпуклого четырёхугольника ABCD взята такая точка P, что ∠PBA = ∠PCD = 90°. Точка M – середина стороны AD, причём BM = CM.
Докажите, что ∠PAB = ∠PDC.
|
|
Сложность: 3+ Классы: 9,10
|
В выпуклом четырехугольнике АВСD точка Е — середина CD, F — середина АD, K — точка пересечения АС и ВЕ. Докажите, что площадь треугольника BKF в два раза меньше площади треугольника АВС.
|
|
Сложность: 3+ Классы: 9,10
|
С центрами в вершинах прямоугольника построены четыре окружности с радиусами
r1,
r2,
r3,
r4, причём
r1 +
r3 =
r2 +
r4 <
d;
d — диагональ
прямоугольника. Проводятся две пары внешних касательных к окружностям 1, 3 и
2, 4. Доказать, что в четырёхугольник, образованный этими четырьмя прямыми,
можно вписать окружность.
В правильном треугольнике ABC со стороной a точки E и D
являются серединами сторон BC и AC соответственно. Точка F лежит
на отрезке DC, отрезки BF и DE пересекаются в точке M. Найдите
ME, если известно, что площадь четырёхугольника
ABMD составляет
площади треугольника ABC.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 107]